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SINGULAR DIRECTIONS IN THE CO~G~TION SPACE 
OF LINEAR VIBRATING SYST~~S~ 
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Moscow 

(Receked 7 February 1991) 

Besides the familiar concept of principal directions of normal modes in the theory of o~~~atio~s of linear 

systems with constant coefficients, new notions are introduced: directions conjugate to the principal 

directions, and principaI directians of forced vibrations. The basic properties of vibrations in these 

directions are established. 

Ax*” + Bs = p cos oC WJ 

where A and B are symmet~c positive definite rt x n matrices, x is an n-vector written as a column, p 
an Yt-vector, also written as a column, whose modulus represents the amplitude of a periodic driving 
force and its direction is the direction in which this force is applied in the con~guration space. 

The right-hand side of (1.1) is a special case of a periodic force driving a system with n degrees of 
freedom, in which the forces acting on each degree of freedom are synchronous and in phase. Later 
we shall also consider a more-general situation. 

For the sake of continuity, we will first outline a few prerequisites [I]. 
If p = 0, a particular solution of system (1.1) is sought in the form x = 4 cosvf, which leads to the 

following algebraic system: 

(B - GA) q = 0 P.2) 

A necessary and suf~cient condition for this system to have a nob-trivial solution q is that 

det, (B - v2A) = 0 (I-3) 

Equation (I .3) has rs positive roots _yl , . . . , v, , corresponding to which are n solutions of system 
(1.2): 41, . * . , qn . The directions defined by these vectors in the configuration space are known as 
the principal directions. The vectors qk have the property of A-orthogonahty: 

0, k#l 
(%o ‘qrf = 1, k 1=: l 

( 

The principal directions are sing&r in the sense that only in these directions can one obtain 
longitudinal modes of vibration, which moreover take place at only one frequency. 

2, Let us associate with each principal direction qk a conjugate singular direction Bqk. [The vector 
Aqk defines the same direction, since by (1.2), Bqk = vk2Aqk.] The properties of conjugate 
directions are established by the following theorem. 
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Theorem 1. If the force pcoswt in system (1.1) acts in a conjugate direction, the system will 
vibrate with frequency o in a principal direction; and as w varies from zero to infinity the system will 
behave as if it were one-dimensional, i.e. the amplitude-frequency characteristic (AFC) will have a 
single discontinuity of the second kind at the point w = vk when p = &k. 

Proof. Let us seek a solution with the frequency of the driving force, in the form q = uqkcoswt, 
where a is a scalar defining the amplitude of the solution. Substituting this solution into system (1.1)) 
we find 

a (B - 02A) qk = &7, 

Substituting A& = vk-2 Bf.Ik into this eqUatiOn, we get 

[ati - W2/Vk") - I] Bq, = 0 

whence a = vk2/(vk2 - 02). The theorem is proved. 
The “singular” property of the directions conjugate to the principal directions is that whenever 

the driving force deviates by an arbitrarily small amount from a conjugate direction, n points of 
discontinuity may appear in the AFC. 
For example, if the driving force ispcosot = Aqkcosvlt, where k#i--that is, the force acts in the direction of 

Aqk but with one of the natural frequencies of the system other than vk--then the periodic solution qcosvlt will 
have a finite amplitude a = vk2/(vk2 - v12), but this amplitude will become infinite if the direction of the force is 
perturbed, albeit by an arbitrarily small amount: p = Aqk + Sp. 

The theorem can be generalized as follows. 

Theorem 2. If the force p cos ot in system (1.1) lies in the linear subspace spanned by m vectors of 
conjugate directions Bqk (S = 1, msn), i.e. p = B(blqkl + . . . -I b,qk,), then the motion of the 
system at frequency o wiil belong to the linear space spanned by the principal direction vectors qk, , 

i.e. q=aIqk,+. . .+amqkm, and as w varies from zero to infinity the system will behave like a 
system with m degrees of freedom (the AFC will show m resonances at the points vk, , . . . , vk,). 

The proof is a natural generalization of that of Theorem 1. 

3. Definition. Let x = q coswt be a particular solution of system (1.1)) defining forced vibrations 
driven by a force pcosot. A principal direction of forced modes (PDFM) is defined as a direction q 
which coincides with the direction of the force p, i.e. 

Q = AP (3.1) 

where h is a scalar defining the amplitude of the vibrations. 
Since the vector q is always related to p by the formula (B - o*A) q = p, a PDFM must satisfy the 

condition 

(B - uB&4) Q = lb-lq (3.2) 

i.e. a vector that defines a principal direction is an eigenvector of the matrix B - w2A, belonging to 
an eigenvalue which is the reciprocal of the amplitude p = A-‘. This eigenvalue is a root of the 
equation 

det (B - u2A - #.3) = 0 (3.3) 

Since the matrix B - o*A is symmetric, this equation has exactly n real solutions. Since A and B 
are positive definite, there exists m,in such that B - 02A is also positive definite for all o in the 
interval 0 < w < W,in . At the same time there also exists urnax such that B - 02A is negative definite 
for all o in the interval w,,, < o < m . 

The first case is referred to as pre-resonant; when it occurs, all the values of I.I. are positive. The 
second is the post-resonant case, when all the values of p are negative. Since the passage from 
negative to positive l.~ values involves going through zero, W,in and wrnax are the least and greatest 
roots, respectively, of the equation 
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det (B - dA) = 0 

To each solution p of Eq. (3.3) there corresponds an eigenvector q-a solution of Eq. (3.2). 
Thus, there exist exactly IZ PDFMs ql, . . . , qn of system (1.1). These vectors form an orthogonal 
basis: (qi , qj) = 0 if if j. The reader should note that the PDFMs coincide neither with the principal 
directions of the normal modes nor with the conjugate directions. If the principal directions of the 
normal modes have the A-orthogonality property: (qi, Aqj) = 0 for if j, and the conjugate 
directions have the A-’ -orthogonality property: (qi, A-lqj) = 0 for i#j, then the PDFMs are 
orthogonal in the sense of the ordinary Euclidean metric. 

4. Equation (3.3) defines an implicit function p(o*) with n branches. The properties of this 
function are clarified in the following theorem. 

Theorem 3. Each branch of the implicit function (3.3) is a monotone decreasing function that has 
exactly one zero in the interval w* E [0, 00). 

Proof. Taking the scalar product of Eq. (3.2) and q, we obtain a scalar equation 

(q, Bq) - a2 (% &7) - c1 (4, q) = 0 (4.1) 

In this equation, vectors q that are solutions of Eq. (3.2) are functions of o*. Hence, 
differentiating (4.1) with respect to o*, we obtain 

Since the terms in this equation that contain dq/do* vanish, in view of (3.2), the remaining terms 
give 

G/do2 = -(% &)l(% sr) 

Since A is positive definite, this implies &/do* c 0. 

(4.2) 

Note that in formula (4.2) each eigenvector determines the derivative of the corresponding 
eigenvalue F. If Eq. (3.3) has multiple roots for some o*, then, since the matrix B- o*A is 
symmetric, the eigenvalues are still differentiable functions of o2 and formula (4.2) remains true, 
but it requires a special choice of eigenvectors from the eigenspace corresponding to the multiple 
root. At any rate, we have proved that ~(0~) is monotone decreasing. We also note that ~(0) > 0, 
since ~(0) are eigenvalues of B. On the other hand, lim,~,~(~*)/~*<O, since this limit is an 
eigenvalue of the matrix -A. A monotone decreasing continuous function that has different signs at 
either end of an interval has just one zero in the interior of the interval. 

This completes the proof of the theorem. 
Figure 1 shows an arbitrary branch of the function p(w*). The quantity 1 A(W*)) = 1 p(02)lM1 

represents the AFC of principal forced modes of vibration of system (1.1). 
It follows from the aforesaid that any system (1.1) has exactly n AFCs of principal vibrations, 

each of which has a unique point of discontinuity of the second kind. This means that if a system 
with n degrees of freedom is driven along a principal direction in the sense defined above, and the 
applied frequency is varied from 0 to CQ, then one resonance will be observed. As in the case of a 
force applied along a conjugate direction, the system will behave as though it were one-dimensional. 
To each principal direction there corresponds a specific resonance frequency, which is simply one of 
the natural frequencies of the system. 

5. If there are dissipative forces in the system, we rewrite system (1.1) as follows: 

Ax” + Di + Bx = petof 

where D is a positive definite matrix and p a column vector with complex coordinates. 

(5.1) 



16 V. F. ZHURAVLEV 

FIG. 1. 

Unlike the previous case, periodic forces acting on different coordinates, even if synchronous, 
will not necessarily be in phase. 

Our definition of PDFM may be generalized naturally as follows. 

Definition. Let x = qe’“’ be a periodic solution of system (S.l), where q is a column vector with 
complex coordinates. A PDFM in system (5.1) is a direction of q at which it coincides with that of p: 
q = Ap, where A is a complex number. 

The word “direction” is being used here in a somewhat non-standard sense; what we mean is the 
following. The real part of system (5.1) has the form (summation over s): 

aL&,*’ + &,rr’ + && = $ cos (ml + qk) (5.2) 

In the configuration space of system (5.2), the right-hand side describes an ellipse in a certain 
two-dimensional subspace. By the direction of the force in this case we mean the orientation in the 
configuration space of the semi-axes of the ellipse, the ratio between the semi-axes and the sense in 
which the ellipse is described. 

To say that the direction of the force coincides with that of a forced mode means that the point x 
in the configuration space of system (5.2) describes an ellipse which is the same, apart from 
similitude, as the ellipse of the force. In motion around the ellipse itself, the displacement vector 
lags behind the force vector, and this constant phase shift is determined by the ratio between the 
imaginary and real parts of the complex amplitude coefficient h (Fig. 2). 

A vector p defining a PDFM is found from the system 

(--o*d+ioD+B--pyE)p=O (5.3) 

where the complex eigenvalue p, as before, is the reciprocal of the amplitude factor A. 

FIG. 2. 
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FIG. 3. 

Equating the determinant of system (5.3) to zero, we get an implicit function F(W) 
branches. Multiplying (5.3) on the left by its Hermitian conjugate, as in (4.2), we obtain 

+/do = f-20 (p*, 44 + i (P*, Dp)J@*, PI 

whence it follows that the derivative of the real part of the root is negative: 

d @a &/do = -20 (P*, APMP*+ P) < 0 

with II 

At w = 0 the real part of the root is positive, but as o-+ CO it becomes negative; it follows that it 
will vanish just once at some w. Hence the AFC of principal forced modes in a system with fairly 
small di~ipation will have the form shown in Fig. 3. 

It should be noted that in a system with dissipation the PDFMs are no longer singular: if the 
direction of the force deviates slightly from a principal direction, the AFC shown in Fig. 3 will also 
vary only slightly. 

6, To include gyroscopic forces in our treatment, it will be convenient, as in the case of dissipative 
forces, to write the periodic force in complex form: 

Ax” + Fx’ -I- Bx = petat (6.1) 

where T’ is the skew-symmetric matrix of gyroscopic forces. The meaning of the principa1 directions 
here is the same as in the dissipative case. Writing the unknown solution of system (6.1) as x = q&’ 
and setting q = Xp, we obtain 

(--AoafioP+B-~~)p=O G9 

Multiplying this equation on the left by its Hermitian conjugate and solving the resulting equation 
for p,, we get 

~1 = f--o8 (p*, AP) + io (P*, FP) f (P*, BP)~/(P*, P) 

Since the products (p*, Ap), i@*, I’p), (p*, BP), (p*,p) are all real numbers, it follows that for 
any skew-symmetric matrix F the root b is a real number. This means that in motion around the 
ellipse (Fig. 2) the phase shift between the force and the displacement is either zero or rr. Each 
branch of p (0) will vanish exactly once, so that the AFC of PDFMs in a gyroscopic system will have 
one discontin~ty ofthe second kind. 

The case of gyroscopic forces differs from those considered previously in that p (0) is no longer a 
monotone decreasing function. 

Let us consider, as an example, a gyroscopic system of fourth order. We choose the matrices A, B, r thus: 

System (6.2), from which we can find the principal directions, becomes 

II 
1-&-p io 

-ii0 f-&-p P=O II (6.3) 
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FIG. 4. 

Equating the determinant of this system to zero, we find the roots 

pa = 1 + 0 - ox, p*=l-U-US 

The AFC of the first principal direction 1 A1 1 = 1 p1 1-l is shown in Fig. 4. It is obvious that since kL1 is no 
longer monotone, a minimum appears in the interval 0 < o < (fi + 1)/2. 

The AFC of the second principal direction is qualitatively the same as that of an ordinary one-dimensional 
system without dissipation. 

The solutions of system (6.3), which determine the principal directions, are 

Hence it follows that the gyroscopic system (p = pl) 

has a periodic solution 

which is proportional 
w = (v5+ 1)/2]. 

2” + y’ + 2 = -sin cot, 

2 - --sill old(i + 0 - d), 

to the driving force and has 

y” - r’ + y - co9 cot (6.4) 

y - 008 at/(i + 0 - 3) 

only one singularity as o is varied [at the point 

If p = p2, however, we get a system analogous to (6.4) but with o replaced by -0, and the periodic solution 
has a singularity at (a - 1)12. 

7. The effect of intrinsically non-conservative forces. Suppose that system (1.1) involves, besides 
positional conservative forces, certain non-conservative forces with a skew-symmetric matrix N: 

Ax” + (B + iv) 5 = p cos ot (7.1) 

If \(N(j-~rnin~,~[o~~- ~$1 (nfi), where o k2 are the roots of the equation det (B - o*A) = 0, then 
the homogeneous part of the system has real natural frequencies, i.e. it conserves the oscillatory 
nature of the solutions. This is the case of interest here. 

Seeking a solution of system (7.1) in the form x = qcosot, we obtain 

(B + N - w=QA - hE) Q = 0 (7.2) 

Let us substitute q = Lr into this equation, where L is an orthogonal matrix so chosen that 
L’AL = E. Then Eq. (7.2) becomes 

(B” - (~2 + A) E) r = 0 (B” = L’ (B + IV) L) (7.3) 

We now multiply both sides of (7.3) on the left by a symmetric matrix S: 

[SB” - (02 + A) S] P = 0 (7.4) 

choosing this matrix so that SB” is symmetric 

SB” = B”TS (75) 
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The matrix equation (7.5) has an infinite number of solutions S. By virtue of the restrictions 
imposed on j/Nj/, we can choose positive definite matrices among these solutions. Since SB” and S 
are symmetric positive definite matrices, system (7.4) has n real eigenvalues Ai, . . . , A, and n real 
vectors I~, . . . , rk. The PDFMs in system (7.3) are obtained as qk = Lrk. They are orthogonal in the 
sense of the metric defined by the matrix LSLT. 

The properties of the AFC of the PDFMs for this case are the same as in the case of purely 
conservative forces. 

8. We will now consider the general case 

Ax” + (D + I’) i + (B + N) x = peiot (8.1) 

Here A, B, and D are symmetric matrices and P and N are skew-symmetric. As everywhere 
previously, there are n complex PDFMs ql, . . . , q,, , which are solutions of the algebraic system 

(-OS&4 + io (D + r) + B + N) q = k-19 

Any vector p in (8.1) may be expressed as a linear combination of the principal directions: 
p=b,ql+...+b,q,. 

Accordingly, a periodic solution may always be expressed as a linear combination of vibrations in 
the principal directions: 

x = I& (0) blql + . . . + h, (0) hq,] dot (8.2) 

If D = 0 and the above conditions are satisfied (A and B are positive definite and the norm JJNJI is 
bounded), then the AFC of each principal forced mode lhk(o)l involves exactly one point of 
discontinuity at w = vk, where vk are the natural frequencies of the homogeneous part of the 
system: det (-v*A + ivr + B + N) = 0. But if these conditions are not satisfied, or if Df 0, there 
may be less than n characteristics with singularities (or none at all). 

We will conclude with the following remark. The general form of a periodic solution of system 
(8.1) is 

x = I--&A + i0 (D + r) + B + NJ-l peiot 

The inverse matrix occurring on the right exists provided that o # vk (k = 1, . . . , n). The 
coefficient of eioc is a rational function of o and, by an elementary theorem, may be expressed as the 
sum of simple fractions. The analogous coefficient in (8.2), is qualitatively speaking, a different type 
of expansion, underlying which is the above definition of principal directions. The coefficients Ak (w) 
in (8.2) are not simple fractions: they are meromorphic functions with at most one simple 
singularity. 
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